
Evolution Algorithm for Job Shop Scheduling Problem Constrained by
the Optimization Timespan

František Koblasa 1, a, František Manlig 1,b Jan Vavruška 1,c
1
 Department of Manufacturing Systems, Faculty of Mechanical Engineering, Technical University

of Liberec, 461 17 Liberec, Czech Republic

afrantisek.koblasa@tul.cz, bfrantisek.manlig@tul.cz, cjan.vavruska@tul.cz,

Keywords: JSSP, Evolution algorithm, timespan constrain

Abstract. Nowadays, production scheduling is a greatly debated field of operation research due its

potential benefits for improving manufacturing performance. Production scheduling, however,

despite the increasing use of APS (Advanced Planning and scheduling Systems) and MES

(Manufacturing Enterprise Systems) is still underestimated and one frequently encounters more or

less intuitive scheduling using excel spread sheets at workshop level, mainly in SME (Small and

Medium Enterprises). Some of the main reasons for this are the complexity of related algorithms

and the timespan of the optimization manufacturing operation sequence. The complexity of the

algorithms usually leads to a number of operators which are difficult to set up for a usual workshop

foreman or manufacturing planner. That is why dispatching rules are widely used in comparison

with advanced heuristics, such as Evolution Algorithms (EA).

Therefore, operation research should not focus only on getting the best values of the objective

function by problem based operators, but also on industrial practice requirements such as operator

simplicity and a low timespan of the optimization.

This article briefly introduces key principles of the scheduling system developed for the Job Shop

Scheduling Problem (JSSP) type of manufacturing. An implemented EA with random key

representation, clone and incest control and chromosome repair algorithm is briefly explained.

Further, the test results of the evolution operator (e.g. crossover and selection) are presented with

respect to the value of the objective function and timespan of the optimization. The research goal is

to develop a principle of automatic optimization using EA, where the single parameter to set is

required optimization timespan.

Introduction

Job Shop Scheduling Problem (JSSP) comparing with Open Shop Scheduling Problem (OSSP)

and Flow Shop Scheduling Problem (FSSP) is, in the real world scheduling point of view, still

underestimated.

JSSP manufacturing systems, thanks to its complexity and additional constraints, intends to be

solved by APS systems [1]. However, these systems usually use only dispatching rules (with

questionable results) instead of advanced meta-heuristics, as evolution algorithm, due hard to set up

operators as cross over, mutation or selection.

This article focuses on simplification of the set up operator principles and briefly introduces key

principles of the scheduling system developed for the Job Shop Scheduling Problem (JSSP) type of

manufacturing, following the major goal to develop principle where the only parameter required to

be set up by user, is timespan of the optimization.

This article is organized in following way. In section 2, used Evolution algorithm (EA) is shortly

described. In section 3, crossover, mutation and selection operators are tested with respect to

timespan and fitness function (makespan). In section 4 principle of automatic search is presented

together with preliminary results. Finally, designed approach is summarized and further research is

discussed.

Applied Mechanics and Materials Vol. 309 (2013) pp 350-357
Online available since 2013/Feb/13 at www.scientific.net
© (2013) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/AMM.309.350

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 147.230.98.36, Technical University of Liberec TUL, Liberec, Czech Republic-03/04/13,09:26:48)

http://www.scientific.net
http://www.ttp.net

Random Key Based EA with Chromosome Repair and Incest Control

Designed EA follows classical structure of Simple Genetic Algorithm (initiation-selection-

crossover –mutation) using Random Key (RK) representation developed by Bean [2]. Selection is

made by roulette wheel principle, where best solution has the highest probability to become parent

and number of selected parents equals population size. Uniform crossover is used in reproduction

stage with probability set to 0.1-0.4 (tested in section 3). Instead of classical mutation principle,

Critical Path Analysis based on Local Search is used (LS-CPA), following schema presented by

Nowicky and Smutnicky [3]. This approach is applied on defined percentage of selected parents

(tested in section 3), where critical block is randomly selected, the same as the first or the last pair

of operation to be swapped.

Fitness function is calculated by constructive Giffler and Thompson active schedule generation

algorithm (CA) [4] and unfeasible schedules are repaired as follows:

Pt – partial schedule of (t-1) scheduled operations

Rt – Random Keys generated sequence of operation on machines

St – set of operations schedulable at stage t i.e. all the operations that must precede those

in St are in Pt

et – the earliest time that operation ok in St could be started

ft – the earliest time that operation ok in St could be finished, that is ft = ok + pk , where pk

is the processing time of ok

1. Let t = 1 with Pt being null. St will be set of all operations with no predecessors (those that are

first in their job) and Rt will be set of all operations those are first in Random Keys generated

sequence.

2. Find ft
*
=min ok in Sk {ft} and machine M

*
on which ft

*
 occurs. If there is a choice for M

*
 choose

arbitrarily.

3. If there is an operation ok in both Rt and St which requires M
*

and et< ft* choose ok from Rt

Else if operation ok in St which requires M
*

and et< ft* is not in Rt at correct position . Choose ok

from St randomly and repair sequence by shifting selected operation on correct position in Rt and

shift others (Fig. 1).

Fig.1. Repairing chromosome

4. Move to next stage by

I. Adding oj to Pt, so creating Pt+1

II. Deleting oj from St and creating St+1 by adding to St the operations that

directly follows oj in its job (unless oj completes its job)

III. Moving position Rt on selected machine to Rt+1

IV. Increment t by 1

5. If there are any operations left unscheduled (t<number of operation), go to 2. Otherwise,

stop.

Applied Mechanics and Materials Vol. 309 351

Sometimes, cross over procedure cause, that random key used for sorting operation is damaged

by genes, which have same random key, so algorithm is not able to determine their operation

sequence. That is caused by “incest” cross over, where previously selected parent and its child pair

to produce new individual.

Incest control mechanism repair defect genes by calculating RK average of the last healthy RK

gene and defect RK gene and replace defect random key gene by this average.

EA continues by selecting individuals (parents and children), by Elite strategy with clone control

or Parent versus child selection, to be allowed in to new generation

In elite strategy with clone control (ECC), all individuals (old generation and children) are

selected and sorted by fitness function, than better half of individuals is allowed to proceed in to the

new generation. This approach usually leads to fast convergence of the population to the best

individual, so clone control mechanism is also applied. Clone control mechanism, after population

sort, checks value of the individuals fitness function and if there is some individual with the same

fitness (clone), than individual is replaced by individual that did not succeed in selection. This

procedure is much faster than checking the chromosome to compare chromosomes. However, it

could lead to removing solutions that have the same fitness, but different sequence of operations

(chromosome).

Parent versus child selection (PvCH) is inspired by evolution strategy (1+1) and tournament

selection.

This selection is made by tournament between parent and its respective child and the one with

the better fitness continues in to the new generation.

Algorithm repeats till defined number of generation.

Experimental Result of Different Operator Setup

Described algorithm is tested on one of the hardest JSSP – FT10 problem designed by Fisher and

Thompson [5] searching for suitable:

 crossover operator coefficient

 selection procedure

 mutation range done by local search

Tests repeat 10 times on PC – CI7 CPU 2.7 GHz 8GB RAM. The goal is to minimize makespan

(fitness function) with respect of timespan optimization.

Operators of described algorithm for all tests in this section are:

 population size – set to 2x number of operations +100

 number of generation = 200

The first test focuses on crossover impact on premature convergence (Fig. 2) and on fitness

function (Tab. 1). The range of 0.1-0.4 (probability that gene will be shared by parent) is tested with

elite selection procedure without clone control.

Fig. 2. Premature convergence - generation in which whole generation converged to the best

solution.

352 III Central European Conference on Logistics

It is obvious, that crossover coefficient has significant impact on premature convergence. Higher

probability (0.4) has a good explorative ability (one of 10 populations did not converge at all). Low

probability (with good exploitive ability) converged too fast, so algorithm has not any possibility to

find better makespan (Tab. 1).

Table.1 Experiment results of crossover operator with simple elitism.

Crossover c. 0.1 0.2 0.3 0.4

Min. f(x) 996 991 1013 988

Max. f(x) 1049 1015 1030 1027

Average f(x) 1024,1 1006 1016,5 1012,4

Avg. Timespan

[h:min:s]
0:09:23 0:09:25 0:10:29 0:10:33

Table 1 shows that higher crossover coefficient is applied the greater timespan is required, but

for practical use difference is not that significant. Crossover c. of 0,4 obtains the best fitness and 0,2

the best avg. makespan.

The second test focuses on PVCH (Tab. 2) and ECC (Tab. 3) selection procedures and crossover

c. to get the best fitness in timespan.

Tab.2 Experiment results of crossover operator and PvCH selection

Crossover c. 0.1 0.2 0.3 0.4

Min. f(x) 1000 1015 1015 1013

Max. f(x) 1024 1032 1023 1015

Average f(x) 1015,6 1022,4 1017,5 1014,4

Avg. Timespan

[h:min:s]
0:08:56 0:09:00 0:09:00 0:09:01

Tab.3 Experiment results of crossover operator and ECC selection

Crossover c. 0.1 0.2 0.3 0.4

Min. f(x) 970 990 1000 988

Max. f(x) 1013 1022 1028 1020

Average f(x) 997,2 1010,2 1010,6 1007,4

Avg. Timespan

[h:min:s]
0:09:02 0:09:15 0:09:16 0:09:16

Experiment shows that combination of 0.1 crossover c. together with ECC selection type gives

us both the best and the best average results. Figure 3 shows trend of the best average makespan

during optimization by ECC. The crossover c. 0.1 iterates by the fastest speed to the optimal

solution and also improves when other crossover c. stagnates.

Fig. 3. The average makespan- ECC selection

Applied Mechanics and Materials Vol. 309 353

Operator ECC with 0.1 crossover c. is set for further experiments analyzing previous results.

The last experiment, before setting up automatic optimization, consist of setting percentage of

parents on which is applied LS-CPA. The percentage is set to 100% to test method ability to

improve initial solutions, 50% to test timespan dependencies given by LS-CPA percentage. The

percentage of 20%, 10% and 5% are tested as usual range of mutation in literature. Table 4 shows

results for each percentage together with optimization timespan. Percentage of 100% shows that

LS-CPA can be successful – achieved the best average makespan. However, optimization timespan

is far greater than in the previous tests. That is given by necessity to calculate solutions three times

– to calculate CPA (forward, backward schedule) and also solution after operation swap. When

comparing timespan of other LS-CPA percentage, it is obvious, that this method prolongs timespan

of one individual approximately at least three times. Timespan of 100% is nearly four times greater

compared with the percentage of 50%. That is caused also by ECC, because of greater number of

clones generated by this approach.

Tab.4 Experiment results of LS-CPA percentage

Crossover c. 1 0.5 0.2 0.1 0.05

Min. f(x) 974 957 977 952 967

Max. f(x) 1021 1017 1019 1020 1022

Average f(x) 993,3 995,8 995,7 994,8 997,9

Avg. Timespan

 [h:min:s]
1:21:28 0:25:28 0:15:39 0:12:18 0:10:42

Percentage of 10% is selected for automatic optimization because its iteration to the optimal

solution is the fastest (Fig 4). Difference of the average best makespan of all the set up percentages

is not great in practical point of view so, 10% is selected thanks to its ability to find solution (952)

near optimal one (930) and low optimization timespan.

Fig. 4. The best average makespan.- LS-CPA

Automatic Optimization

Principle of automatic optimization is based on planner or workshop foreman need to get the best

possible feasible schedule in required time. Generally, there is a greater pressure on timespan of

optimization, than on fitness function. Workshop foreman needs some feasible schedule in given

time more than the best schedule in the future.

Automatic optimization begin with constructive algorithm using common dispatching rule as

Shorter Processing Time (SPT), Longer Processing Time (LPT), Most Work Remaining (MWKR)

and First-In First-Out (FIFO), knowing that this method give us feasible schedule fast. Based on

SPT timespan, algorithm predicts the timespan of the following dispatching rule. If the predicted

timespan is smaller than remaining optimization timespan, than the next schedule is calculated.

Further predictions are based on average of the previous timespans. That principle compensates the

different PC resource utilization over the time.

354 III Central European Conference on Logistics

Optimization continues with selecting schedules generated by dispatching rules and uses them as

initial solutions for single swap local search [6] to get better results in greater time than in the case

of dispatching rules. Timespan of the optimization is checked each iteration of this method to

predict further iteration. Algorithm also checks if required timespan did not exceed current time

limit.

EA is the last applied method which should give us the best results but in longer timespan than

previous methods.

EAs are hardly ever used in APS because it is hard to define operators as mentioned before and

there is a small probability that a usual foreman will understand their function. It is hard to imagine

that they will try to find the best setup to find good fitness solution, more likely, setup will be

leaved to default setting. Selection procedure same as crossover c. or usage of LS-CPA can make

difference seeking for good result. However, there is not much difference of fitness in average (in

the case of LS-CPA less than 1%). Timespan of optimization is what differs a lot as LS-CPA

shows. The difference between LS-CPA setups (in the case of FT10) is more than one hour.

Timespan of optimization is influenced by number of generation and by number of schedule

calculation by CA. Number of generations can be easily determined by before defined timespan and

timespan of CA runs with respect to number of individuals in generation.

Number of individuals in generation can be set fixed as before or it is possible to use one of the

adaptive population sizing schemes (APSS) [7,8,9]. We decided to use APSS, knowing that

population size can have significant impact on explorative and exploitive function of EA.

We use Population Resizing on Fitness Improvement GA (PRoFIGA) [10] due to its interesting

results in the field of parameter less GA research. PRoFIGA resize the population by growing or

shrinking based on an improvement of the best fitness contained in the population. Population

grows when there is an improvement of the best fitness function or when there is no improvement

in defined number of iteration else population shrinks (decrease factor 0.1). Growing factor X is

than:

 IF –increase factor (0,1) – in our case 0.5

 MN –maximal number of generation, which in our case is initially set to 1000 and actualized

every generation based on previous population number and its timespan calculation.

 CN –number of current generation

 maxFITn –current best fitness

 maxFITp –previous best fitness

 inimaxFIT –initial best fitness

FITini

FITpFITn
CNMNIFX

max

maxmax
)(

 (1)

This approach was tested on before used FT10 with maximal timespan of 15 minutes (Tab. 5.),

minimal population size 10 for further initial population of large scale problems and maximal

population size is constrained by remaining timespan.

Tab.5 Experiment results - Automatic optimization

CA SPT LPT MWKR FIFO

f(x) 1489 1355 1178 1184

Timespan

[min:s,ms]
0:0,09 0:0,125 0:0,114 0:0,12

Meta-h. LS GAb GAw GAa

f(x) 1052 975 998 987,5

Timespan

[min:s,ms]
0:31,00 14:28,632

Applied Mechanics and Materials Vol. 309 355

Results given by Automatic optimization show, that adaptive population technique can give us

better average (GAa) results than fixed number of individuals in the population. More than that,

difference between the best fitness (GAb) and worse (GAw) is smaller than in previous tests. That

is caused by automatic exploration-exploitation by scaling population, where some population

iterates fast to the optimal solution locking in hard local optima and other population lock in optima

very fast, but escapes thanks to population growth. (Fig 5.)

Fig. 5. Automatic optimization of makespan by EA

Conclusions

The EA operators of cross over selection and mutation were tested on single F10 problem to get

the best solution in reasonable optimization timespan. Crossover and selection does not have that

great impact in this case as expected, on the other hand, mutation by LS-CPA provides us better

solution, however, in much greater timespan. Adaptive population sizing does not reach the best

results, but differences between each experiment were smaller than using previous mentioned

methods.

Further research will focus on testing of found settings on other JSSP, FJSSP problems together

with real constraints as setup, transport time and shiftwork systems with goal to applied designed

automatic search on practice models.

Acknowledgments

This work was supported by grant TUL-SGS-2821

References

[1] I. A.Chaudhry. A Genetic Algorithm Approach for Process Planning and Scheduling in Job

Shop Environment. Proceedings of the World Congress on Engineering 2012 Vol III WCE

2012, July 4 - 6, 2012, London, U.K. ISSN 20780958,(2012)

[2] J.C. Bean. Genetic Algorithms and Random Keys for Sequencing and Optimization, ORSA

Journal on Computing, vol.6, no.2, (1994)

[3] E. Nowicki, C.Smutnicki: A fast tabu search algorithm for job shop problem. Manag. Sci.,

vol. 42, (1996), 797–813.

[4] B. Giffler, G. Thompson. Algorithms for Solving Production Scheduling Problems. European

Journal of Operational Research, vol. 8, (1960). 487-503.

[5] H. Fisher and G.L. Thompson. Probabilistic learning combinations of local job-shop

scheduling rules, J.F. Muth, G.L. Thompson (eds.), Industrial Scheduling, Prentice Hall,

Englewood Cliffs, New Jersey, (1963), 225-251.

356 III Central European Conference on Logistics

[6] F. Koblasa, L.S. Dias, J.A. Oliveira, G. Pereira, “Heuristic Approach as a way to Improve

Scheduling in ERP/APS Systems”. Proceedings of 15th European Concurrent Engineering

Conference (ECEC2008). Eds. A. Brito and J.M. Teixeira, 47-51, Porto. EUROSIS-ETI

Publication. ISBN 978-9077381-399-7, (2008)

[7] T. Hu , W. Banzhaf. Evolvability and speed of evolutionary algorithms in light of recent

developments in biology, Journal of Artificial Evolution and Applications, (2010, 1-28)

[8] Elizabeth Montero, María-Cristina Riff. On-the-fly calibrating strategies for evolutionary

algorithms, Information Sciences, Volume 181, Issue 3/1, ISSN 0020-0255,

10.1016/j.ins.2010.09.016, (2011), 552-566.

[9] Brest J, Maucec MS. Population size reduction for the differential evolution algorithm.

Applied Intelligence, issue. 29, n. 3. ISSN 0924-669x, (2008)

[10] A. E. Eiben, E. Marchiori, and V. A. Valkó. Evolutionary algorithms with on-the-fly

population size adjustment. In Parallel Problem Solving from Nature, PPSN VIII, volume

3242 of Lecture Notes in Computer Science. Springer, (2004), 41–50

Applied Mechanics and Materials Vol. 309 357

III Central European Conference on Logistics
10.4028/www.scientific.net/AMM.309

Evolution Algorithm for Job Shop Scheduling Problem Constrained by the Optimization Timespan
10.4028/www.scientific.net/AMM.309.350

http://dx.doi.org/www.scientific.net/AMM.309
http://dx.doi.org/www.scientific.net/AMM.309.350

